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ABSTRACT

The response of a composite cylinder (metallic cylinder coated
with a rubber material) subjected to an underwater explosion was
analyzed numerically. Qualitative differences between coated and
uncoated cylinders were investigated. The dynamic response c¢f the
coated cylinder was found to be adversely affected when impacted by
an underwater shock wave under certain conditions of geometry and
material properties of the coating. When adversely affected,
significant deviations in axial and hoop stress and strain values
were observed. The cnated cylinder exhibited larger effective
plastic strain and higher residual internal energy in the metallic
materiél. Rubber coatings appeared to inhibit energy dissipation
from the metallic material to the surrounding water medium. A
parametric study of various coatings was performed on both aluminum
and steel cylinders. The adverse effects of the coating decreased
when the shear modulus of the rubber was increased or when the
rubber thickness was increased, indicating the existence of
threshold values for these parameters. The results of this study
indicate that the stiffness of the coating is a critical factor

involving these threshold values.
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I. INTRODUCTION

Not since World War II has mankind witnessed such dramatic
and profound changes as those that have occurred in recent
years. Sweeping political and economic reform in the former
Soviet Union has not only slowed their military production and
affected their deployment of forces, but it has been the
impetus that has led the United States to re-evaluate its own
strategic planning and policies. Accordingly, the United
States Navy has had to re-formulate its "Maritime Strategy".

Although the Soviet threat has diminished, the United
States Navy must remain capable of quickly responding to
conflicts around the world, as demonstrated in Operation
Desert Shield and Operation Desert Storm. To continue to meet
all its commitments abroad, amidst a shrinking defense budget,
the Navy has placed a premium on development and production of
ships and submarines that are technologically superior, cost-
effective, easily maintained and perhaps most importantly,
survivable. In the 2lst century, “shallow water" naval
engagements are most likely. In this environment, U.S.
warships and submarines will be most vulnerable to mines and
depth charges. Although a future adversary may not possess a
large arsenal of military firepower, it will likely employ
sophisticated weapons, possibly nuclear weapons, capable of

inflicting considerable damage without rendering a direct hit.




To counter this threat, the United States Navy has
intensified its efforts in research and study of underwater
explosions on ship and submarine hulls. No matter how well a
ship or submarine might be armored, the effects of a airect
hit from a mine, torpedo or depth charge are potentially
catastrophic. If however, the explosion were to occur away
from the hull, then the ability of the hull to withstand the
effects of the shock wave caused by the blast becomes crucial.
In an attempt to better understand the effects of blast damage
on shock hardening, the Navy has performed underwater
explosion tests and analyzed the problem numerically using

‘computer simulations. Knowledge gained through such study
should prove invaluable to ship and submarine designers of the
future.

The dynamic response of a structure to an underwater
explosion is a complex problem due to the interaction between
the fluid and structure. Over the past several years, the
Naval Postgraduate School has conducted extensive research in
the field of underwater shock. This study has involved both
physical testing and numerical modeling of uncoated metal
cylinders of various configurations such as unstiffened,
stiffened, single shell layer and double shell layer models.
Ship shock qualifications and even small scale testing can be
cost prohibitive and time consuming, therefore much of the
work has focused on developing computer models using the

numerical analysis technique. Results from earlier studies




[Refs. 1-3] indicate response predictions compare favorably

with both analytical solutions and experimental data.

In a recent study conducted by the Navy [Ref. 4]}, when
subjected to an underwater shock wave, damage to a steel test
panel increased when it was covered with a low density layer
of glass microspheres suspended in water (slurry). This result
was unexpected and the reason for this adverse response is
still under investigation. It is suspected that compliant
coatings may affect the propagation of a shock wave and the
dynamic response of a structure.

The objective of this study was to examine the response of
a metal cylinder coated with a rubber material, when subjected
to an underwater explosion, utilizing the numerical analysis
techniqgue. Rubber coated aluminum and steel cylinders were
analyced and a parametric study of various coatings was
performed to gain a better understanding of the damage
mechanism. Preliminary study seems to indicate that the
dissipation of energy from the structure to the surrounding

water medium is critical Lo its dynamic response.




II. NUMERICAL ANALYSIS

A. NUMERICAL CODES
To study the effects of an underwater shock wave on a
cylinder, a coupled finite element and boundary element code
was utilized. The two codes operate in tandem so that the
fluid-structure interaction can be calculated. This code was
successfully implemented at the Naval Postgraduate School in
1991 and has since been the primary tool used for studying
underwater shock phenomena. Structural calculations were
handled hy the finite element code while the effects of the
propagation of the explosive pressure wave through the water
medium were calculated by the boundary element code.
1. Finite Element Code

The finite element code used in this analysis was
VEC/DYNA3D [(Ref. 5}. Originally implemented in 1976, it has
been widely wused in the industrial sector and at many
universities. The code is efficient and extremely flexible,
offering a wide variety of material models from which to
choose.

Input to VEC/DYNA3D was provided by LS-INGRID ([Ref.
6), a pre-processor and three dimensional mesh g@enerator.

Model configuration, element and material type, boundary




constraints and loading conditions were specified ir the pre-
processor.

Output from VEC/DYNA3D was provided by LS-TAURUS [Ref.
7], an interactive post-processor that was used to display
fringe plots, element, node and material time history plots,
and generate data files.

2. Boundary Element Code

The boundary element method code used in this analysis
was USA (Underwater Shock Analysis) [Ref. 8]. The USA code
computed the transient response of the submerged cylinder to
the shock wave. Calculations of the fluid-structure
"interaction are based on the Doubly Asymptotic Approximation
(DAA) theory developed by T.L. Geers [Ref. 9]. The boundary
element method precludes the requirement to discretize the
water medium since equivalent forces and masses are
transferred to the cylinder from the water and are applied at
the nodes of a two dimensional mesh which is superimposed on
the cylinder surface. As a result, computational efficiency is
improved.

3. Structurs and Wave Equations
The differential equation for the dynamic response of

& structure can be expressed as follows:

(M) W+ [c,) W+ (K] W =8 (1)

where (M,] , [C,) and [K,] arethe structural mass, damping and




stiffness matrices respectively, and (& , 8 and {1 are the
nodal acceleration, velocity and displacement vectcrs
respectively. {ff is the excitation force vector and can be
expressed as a functicn of the incident and scattered
pressures of the impinging shock wave and any concentrated
loads applied to the structure. Their functional relationship

is as follows:
il = - (6] (2] Py + B + ify (2)

where [G] is the fluid/structure transformation

matrix, [A;] is the diagonal area matrix associated with the
fluid elements, {(P;+PJ is the incident and scattered pressure
wave vector and {f4 is the force vector applied to the dry

structure. The scattered pressure represents the only unknown
Quantity, but it can be determined by solving the first order

wave equation given below,

(M, B) + pclag) () = peoly,] ) (3)

where (M,] , p , ¢ and {4} are the symmetric fluid mass matrix,

fluid density, sound speed and particle velocity vector
respectively. Although the general solution is complicated,

early and late time solutions to equation (3) can be found by

(o4




approximating B >{P} and (BJ<<{P} respectively and are

referred to as the Doubly Asymptotic Approximations. The early
time approximation is also referred to as the high frequency
approximation or plane wave approximation. The solution is
calculated at early times, at locations close to the structure
and assumes the shape of the shock wave to be planar. The

change in the scattered wave pressure is almost instantaneous,

so (B} becomes the dominant term. Simplification and

integraticn of equation (3) leads to the following solution:

{Ps} = pC{Us} (4)

The late time approximation is also referred to as the lcw
frequency approximation or virtual mass approximation. The
solution 1s calculated when the scattered pressure wave has
travelled a significant distance from the structural surface

so that the pressure change becomes negligible and

the (B} term can be ignored. Simplification of equation (3)

leads to the following form:

(a,] ) = (M) ) (5)

Determination of intermediate time solutions is accomplished
by using the DAA relations which bridge the upper and lower

limit approximations. A second DAA theory, called DAAZ2 was




later developed to account for surface curvature effects. DAA2

theory is contained in [Ref. 10].

B. NUMERICAL MODEL
1. Material Models

The behavior of the metal material was based on the
Kinematic/Isotropic Elastic-Plastic Model ([Refs. 5,6]. In
addition to the density, the model required at least two other
material properties be specified such as the bulk modulus,
Young’'s modulus, shear modulus or Poisson's ratio. Optional
inputs included yield stress, hardening modulus, or hardening
parameter. The hardening parameter reflects the type of
hardening (Isotropic or Kinematic) the material will
experience. When steel was analyzed, strain-rate hardening
effects were accounted for and were based on the Cowpers-

Symonds Model, shown in equation (6)
= (de/dt) \1/»
oy = 0,1+ ({2ELdE) ) 1) (6)

where 0, is the yield stress and ¢ and p are the strain-rate

parameters which were obtained from a previous study [(Ref. 3].

The behavior of the rubber material was based on the
Compressible Mooney-Rivlin Model (Refs. 5,6). Mooney pioneered
a new approach to analyze the deformation of a soft material

such as rubver [Ref. 11]). He stated that classical elastic




theory could not be applied to a highly elastic (hyper-elastic
or superelastic) material but that deformation could be
accurately represented in terms of its general strain energy
density.

Mooney postulated that in addition to being homogeneous
and free from hysteresis, a hyper-elastic material possesses
the following properties:

- It is isotropic in the undeformed state and remains
isotropic in planes that are at right angles to a stretch
or squee:ce.

- Deformations are isometric, i.e. occur without change in
volume.

- In simple shear, shearing stress in any 1so:ropic plane 1s
proportional to the shear force.

Mooney expressed the general strain energy density function of

a material, W as foo.ows:

: 1 1 1
We G (ATediad3-3) + Glem et e -3) (7)
AMoOA A
where A, is the principal stretch, which 1is eguivalent
to (1+e,) . where ¢, is strain. Applying conditions for a

hyper-elastic material and substituting expressions

for €, and C; as shown below

¢ &, c,= 1&H (8),(9)




leads to the following form:

i=1 l'.'l

3 3
_ G _ 1 H 2_ 1
W= gy et S e (10)

where G and H represent the modulus of rigidity and the
modulus characterizing asymmetry of reciprocal deformation
respectively. The variable H is a measure of the ability of a
material to store energy when compressed as opposed to when
stretched. To express the asymmetry of reciprocal deformation
in a more useful form, Mooney defined a new parameter & ,

called the coefficient of symmetry, as follows:
H
a-2 (11)
G

Experimental values for G ar 1 & were derived for two types of
rubher, tread stock and gum <tock. Mooney found that the
experimental data relating force and elongation, agreed
closely with @nalyt: ral results for soft rubber undergoing up
to 400% elongation and 50% compression. Mooney believed that
just as the infinitesimal deformation of a hard cr moderately
elastic material can be characterizad by two material
properties, shear modulus and Poisson’s ratio, deformation of

rubber can also be characterized by two properties, shear

10




modulus and coefficient of asymmetry. Mooney’s analysis and
development form the basis upon which the numerical model for
the rubber material was generated. In the finite element
model, the strain energy density function was defined as

follows.

W= A(I-3) + B(II-3) + C(IIT"%-1) + D(III-1)? (12)

where

c= 0.5a+B , p=AYy-2) + BU1v-3) - (13), (14)
2{1-2v)

2(A+B) =G (15)

v is Polsson's ratio and I, II,IIT are invariants of the right
Caucny~Green tensor. The model required values for the
constants A and B . By relating the first two terms of the
streln energy density equation, equation (12), with equation
{(7), as expressed by Moocney, eqQuivalent expressions for the

two constants were determined and are shown below.

A=

'3 {»)

(1+a) =-§5<1-¢> (16), (17)

Since values for G and @ were given for tread stock and gum

stock in Mooney's development, these types of rubber were used

in the analysis.

11




2. Simulated Teit Conditions

All cases involved identical test conditions. The
problem simulated detonation of 60 lbs. of HBX-1 spherically
shaped explosive at a horizontal standoff distance of 25 ft.
from the cylinder resulting in a side-on attack geometry. The
uncoated cylinder models (metal only) were 12 in. in diameter,
42 in. long, 1/4 in. thick (shell thickness) with a 1 in.
thick endplate. The composite or coated cylinder models had
the same dimensions for the metal material as the uncoated
cylinders but in addition were coated with 1/4 in. of rubber
material on the outer surface of the cylinder. The shell and
coating thicknesses were nominal values and were changed for
parametric study. The cylinder geometry/test profile is shown

in Figure 1.

CYLINDER "
‘/*”‘,z\m. .
A"}
el
l
[ 17 N
Y
A Y
2
\
! CHARGE ! °f
] -
N
Win ! PR

Pigure 1: Cylinder geometry and test profile.
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Actual pressure-time history data from a previous physical
test was utilized in the analysis. The pressure-time history

plot is shown in Figure 2.

FREE-FIELD PRESSURE-TIME HISTORY

2500 T

oo v\ ...........
i :
§ 60 Ibs. HBX-1 explosive
l&l 1000 25 ft. standoft
o

500
o i ' l 4
0 .0005 0010 0018 0020

TIME (sec)

Figure 2: Free-Field Pressure-Time History Plot.

3. Finite Blement Mesh
The problem geometry involved two planes of symmetry
(x-z and y-z planes) which allowed the cylinder to be modeled
as a quarter cylinder. This significantly reduced the number
of computations in each test‘ Appropriate boundary constraints
were applied along the symmetric planes. The finite element
mesh for the gquarter model is shown in Figure 3. The metal

material consisted of 186 thick shell elements while the

rubber material consisted of 198 solid (brick) elements.
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Only solid elements could be used for the rubber in this model
configuration. A total of 9 locations were analyzed in each
case, 3 at the center section of the cylinder, 3 near the
endplate and 3 midway between the center section and the
endplate. At each section the 3 locations were approximately
equally spaced around the surface of the cylinder. Al
represents the element closest to the charge. The metal shell
material in Figure 3 shows the element orientation. Unless
otherwise specified, all plots reference these element
leocations. Although the response of the rubber was examined in
different cases, the analysis of the metal response was the
‘primary objective, therefore most of the results presented are
for the metal material.
4. Element Compatability

Since the metal and rubber were modeled using a
different type of element, it was necessary to verify the
elements were compatable and would give reliable results. This
was done by performing a test simulation for three different
shell layer configurations, a single thick shell model, a
double thick shell (two adjacent single thick shells) model,
and a thick shell and brick model, then comparing the
responses at various locations. The total shell thickness was

the same in all configurations. Results are given in Chapter

III.




5. Material Properties
Nominal material properties were obtained from a
steel and rubber material

materials handbook. Aluminum,

properties are shown in Tables 1-3 respectively.

TABLE 1: ALUMINUM (6061-T6) PROPERTIES

Parameter Symbol Value

Density p 5.412 slugs/ft?
Poisson’s ratio v 0.33

Young'’s mcdulus E 1.08x107 psi
Yield stress g, 4.0x10* psi
Speed of sound a 16,400 ft/sec

TABLE 2: STEEL (ASTM Al06 grade C) PROPERTIES

Parameter Symbol Value

Density P 15.218 slugs/ft’
Poisson'’s ratio v 0.30

Young's modulus E 2.9x107 psi
Hardening modulus B 1.114x10° psi
Yield stress o, 4.7x10¢ psi
Strain-rate parameter 8.797x10 sec™
Strain-rate parameter 5.65

Speed of sound a 16,900 ft/sec
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TABLE 3: RUBBER PROPERTIES

Parameter Symbol | Value

Density p 1.908slugs/ft’
' Poisson’s ratio v 0.4991

Speed of sound a 100 ft/sec

Shear modulus (Tread stock) G 95.8 psi

Coef. of asymmetry (Tread stock) a 0.223

Shear modulus (Gum stock) G 48.6 psi

Coef. of asymmetry (Gum stock) a 0.448




III. RESULTS AND ANALYSIS

As discussed in Chapter 2, data was collected at nine
different locations on the cylinder, corresponding to the
element positions as shown in Figure 3. Results are reported
for both axial and hoop directions. The axial direction is
parallel to the centerline axis of the cylinder while the hoop
direction is tangent to the circumference of the cylindrical
shell for a given location. Some data has not been reported
since the results are often redundant and can be seen in other
plots. For this reason, strain plots are shown in lieu of
stress plots since the same features and trends are exhibited

in both.

A. ELEMENT COMPATABILITY

A preliminary study was undertaken to verify element
compatability since the metallic material and the coating were
modeled using different types of elements. Single thick shell,
double thick shell and thick shell/brick element
configurations were compared at all “A" and "B" locations and
are shown in Figures 4-15. Axial and hoop strain values for
the single thick shell and double thick shell cases were
essentially identical. The thick shell/brick model deviated
slightly from the thick shell models in the magnitude of the

response. However, their frequency of oscillation appeared to
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Figure 4: Axial strain at position Al for different shell
thickness element configurations.
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Figure 5: Hoop strain at position Al for different shell
thickness element configurations.
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Figure 6: Axial strein at position A2 for different shell
' thickness element configurations.
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Figure 7: Hoqp strain at position A2 for different shell
thickness element configurations.
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Figure 8: Axial strain at position A3 for different shell
thickness element configurations.
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Figure 9: Hoop strain at position A3 for different shell
thickness element configurations.




AXIAL STRAIN FOR ELEMENT B1
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Figure 10: Axial strain at position Bl for different shell
thickness element configurations.

HOOP STRAIN FOR ELEMENT Bt

1000

-1000

e | === SINGLE THICK SHELL MODEL
e — DOUBLE THICK SHELL MODEL e
=== THICK SHELLAND BRICKMODEL | .., . .0 1.. ©.0]

MICROSTRAIN

S S

TIME(sec)

Figure 11: Hoop strain at position Bl for different shell
thickness clement configurations.
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Pigure 13: Hocp strain at position B2 for different shell
thickness element configurations.
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Figure 14: Axial strain at position B3 for different shell
thickness element configurations.
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Figure 15: Hoop strain at position B3 for different shell
thickness element configurations.




be approximately the same. At all locations, the thick
shell/brick model appeared to approach the steady s'.ate more
rapidly. The results indicate there was no interfacing problem
or unusual behavior caused by the two different types of
elements and demonstrated that the thick shell/brick model
could be expected to behave consistently and provide reliable
response data. The thick shell and brick (solid) elements were
therefore considered to be fully compatable and were used in

the subsequent study.

B. EFFECT OF SURFACE COATINGS ON CYLINDERS

The purpose of this study was to determine the effects of
-surface coatings on the dynamic response of cylinders
subjected to underwater shock. A total of six cases were
analyzed. In the first case, an uncoated aluminum cylinder was
compared to two composite (coated) cylinders, one coated with
tread stock rubber (referred to as Composite Model 1) and the
other coated with gum stock rubber (referred to as Composite
Model 2). The aluminum shell material and the rubber coating
were both 0.250 inches thick. Both composite cylinders
exhibited higher values of stress and strain than the uncoated
cylinder. In early time, (less than 1 msec.) response we:s
approximately the same. (Passage of the shock wave occured at
about 0.2 msec.). At most locations, the deviations became
significant after 1 msec.. Axial and hoop strain were plotted

for ail elements of interest and are shown in Figures 16-33.

25




.........
IEaT Tl TP

+...»<

PO it

: LR T S S R " <
TONTTTTEerede i et
I R N o T O e *
SRS T ot R . Y- kS S

"

A DTS .

- - . Sl
P2k

bbbbb

—— ALUMINUM MODEL
—-— COMPOSITE MODEL 1
-=+-=« COMPOSITE MODEL £
—— ALUMINUM MODEL

—~-~ COMPOSITE MODEI. 1

TIME(s8c)

e e

TIME(s00)

-+=-=< COMPOSITE MODEL 2
%
it
L]
at position Al for uncoated and coated
26

AXIAL STRAIN FOR ELEMENT A1
cylinders.

HOOPASTRAIN FOR ELEMENT At

aluminum cylinders.
O0p strain
aluminun

R

*
.

17

Pigure 16: Axial strain at position Al for uncoated and coated

05x10*
0.5x10* |
rigure




ie

........................

2

—-— COMPOSITE MODEL 1
ALUMINUM MODEL
=-— COMPOSITE MODEL 1

— ALUMINUM MODEL

TIME(sac)

TIME(sec)
27

nders.

002

AXIAL STRAIN FOR ELEMENT A2
HOOP STRAIN FOR ELEMENT A2

Hoop strain at position A2 for uncovated and coated

aluminum cylinders.

aluminum cyl

19

i
5
e
>
n
<Q

0.5x10¢

-1.0x10
Figure 18: Axial strain at position A2 for uncoated and coated

5000
FPigure

NIVH1ISOHOIN




AXIAL STRAIN FOR ELEMENT A3

.0

P

gzose="
e ecamew

-
e eiet¥oe
sdzagie™

s

FE S T

[P TR SUNPY AU ;3TN
H H i H . bt e N
R W s o OV

[ T P .

i edx

2

.00

ALUMINUM MODEL
~-— COMPOSITE MODEL 1
-~-=- COMPOSITE MODEL 2

-

0.5x10* -

NIVHLSOHOIN

TIME(sec)

Figure 20: Axial strain at position A3 for uncoated and coated

ylinders.

~
~

aluminum

HOOP STRAIN FOR ELEMENT A3

ALUMINUM MODEL
—-— COMPOSITE MODEL 1
--==-- COMPOSITE MODEL 2

2

-1.00x10*

TIME(sec)

inders.

s

Pigure 21: Hoop strain at position A3 for uncoated and coated
aluminum cvl

28




AXIAL STRAIN FOR ELEMENT B1

P R P AT Tar

...................................

ALUMINUM MODEL
~-— COMPOSITE MODEL 1

P T T

NIVHLSOHOIN

006

002

TIME(sec)

Axial strain at position Bl for uncoated and coated

.
.

‘Figure 22

vlinders.

~
-

aluminum

HOOP STRAIN FOR ELEMENT Bt

6000

~— &N

— 4
- W w
@00
099
MEE
=t FE
Soo
=88
253
300
OO0

]

NIVH1ISOHOIN

T - —

TIME(se¢)

Bl for uncoated and coated

ion

it

Hoop strain at pos
aluminum cylinders.

*
.

Figure 23

29




AXIAL STRAIN FOR ELEMENT B2

Thrdrrzirzes
T I s
[ T R S 2
g~
TIiiTizew

iostizzzdased 1 P
R Tt -

_——a

—— ALUMINUM MODEL
=-— COMPOSITE MODEL 1

ALUMINUM MODEL

—-— COMPOSITE MODEL 1
tion B2 for uncoated and coated

TIME(sec)
TIME(sec)

HOOP STRAIN FOR ELEMENT B2

T S P PP

-50
Figure 24: Axial strain at position B2 for uncoated and coated

: O
. o o o4

0 P oo
e citials oM
Q : : : Q. [}]
m i o .m
8 - / Lo b33 e
3 —a R . it o1 8 oy
> DLy oo ol
L RS |\ e S S S S -+ 0

DT T, o
& o i PO AT TV =
m P T T L m
- P . . “a

Ll o 0,
8 g5
© : ool ]

w

: [y ]

. ©

g

-t

e

NIVHLSOHOIN : NIVHLISOHOIN




R Tt 1 St S
El BRSNS
: : G-
-

ALUMINUM MODEL
~-—— COMPOSITE MODEL 1
-=-+= COMPOSITE MODEL 2

—— ALUMINUM MODEL
—<— COMPOSITE MODEL 1
--==-~ COMPOSITE MODEL 2

TIME(sa0)

TIME(sec)

31

0

AXIAL STRAIN FOR ELEMENT B3
0

HOOP STRAIN FOR ELEMENT B3

".._:
[ A SealT :
: M T Y- .
. pad ™

T

aluminum cylinders.
aluminum cylinders.

Figure 26: Axial strain at position B3 for uncoated and coated

Figure 27: Hoop strain at position B3 for uncoated and coated

NIVHLISOHOIN NIVHLSOHOIN




AXIAL STRAIN FOR ELEMENT C1

3x10°

2x10° b

1x10%

MICROSTRAIN

----- = ALUMINUM MODEL

AX10® prd == COMPOSITE MODEL 1
S COMPOSITE MODEL 2
-
ooy ;”..”““““””.“““T“.“'"”T ....... ?
-2x10° . e :
0 .002

TIME(sec)

Figure 28: Axial strain at position Cl for uncoated and
coated aluminum cylinders.
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Figure 29: Hoop strain at position Cl for uncoated and coated
aluminum cylinders.
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‘Figure 30: Axial strain at position C2 for uncoated and coated
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Figure 31: Hoop strain at position C2 for uncoated and coated

aluminum cylinders.
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Figure 33: Hoop strain at position C3 for uncoated and coated

aluminum cylinders.
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Neither composite c¢ylinder showed consistently higher
magnitudes than the other, as this varied depending on the
location analyzed. Both composite models exhibited higher
oscillation than the uncoated model. The results from this
study seemed to indicate that the rubber coating tended to
concentrate energy into the metal cylinder rather than allow
for a rapid release of energy into the water medium as in the
unccated case. The effects of the rubber coating are clearly
visible in the deformation the cylinders. Figures 34 and 35
show deformation of the uncoated@ cylinder and composite
cylinders 1 and 2 at 2.86 msec. and 5.86 msec. respectively.
.The unusually high values of strain attained at locations Cl
and C2 may be attributed to the inertial effects of the thick
endplate. Figure 36 shows a comparison of the internal energy
level in the aluminum shell material for the uncoated cylinder
and the two composite cylinders, the latter exhibiting
significantly higher values. The effects of the rubber
coatings on the cylinder were significant and it is speculated
that the adverse response of the coated cylinders is related
to the energy build-up in the metallic material caused by the
rubber coatings.

In the next phase of study, the analysis focused on
altering certain parameters to determine if they had any
effect on cylinder response. In the second case, Composite
Model 1 was used and the shear modulus of the rubber was

reduced from 95.8 psi to 72.2 psi, with the «coefficient of
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Figure 36: Internal energy of aluminum shell material for
uncoated and coated aluminum cylinders.
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asymmetry held constant. Values for axial and hoop strain
matched closely up to about 1.4 msec.. Thereafter, the
magnitudes varied and the peaks occurred at different times.
Plots of axial and hoop strain are shown in Figures 37-54.
Again, the location was important in determining whether the
effect of lowering shear modulus resulted in a larger
response. Although the variation was small, lowering the shear
modulus appeared to adversely affect the response. The
internal energy of the aluminum material for the two dif “erent
values of shear modulus is shown in Figure 55. After 1 msec.,
the energy levels differed considerably. The cylinder with the
Alower shear modulus showed the higher internal energy. As in
the previous study, the inertial effects on sylinde: response
are most pronounced near the endplate ("C" element locations).

The shear modulus of the rubber was then increased with
the coefficient of asymmetry held constant. As the modulus was
increased by orders of magnitude, the response of the cylinder
dramatically improved. Effective plastic strain is plotted for
element A3 and is shown in Figure 56. For shear modulus values
at or above 500 psi, the aluminum exhibited significantly
lower strain. To help visualize how the response was affected
by a change in the material property of the rubber, radial
velocity at node 49 (interior node at element A3 along the
symmetric boundary) was examined. The plot is shown in Figure
57 and it indicates that at values above 50¢ psi, the response

is not erratic as in the low shear modulus case, but rather
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Pigure 37: Axial strain at position Al for coated aluminum
’ cylinders with variation of rubber shear modulus.
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Pigure 38: Hoop strain at position Al for coated aluminum
cylinders with variation of rubber shear modulus.
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Figure 39: Axial strain at position A2 for coated aluminum
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Pigure 40: Hoop strain at position A2 for coated aluminum

cylinders with variation of rubber shear modulus.
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4Figure 41: Axial strain at position A3 for coated aluminum
cylinders with variation of rubber shear modulus.
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Pigure 42: Hoop strain at position A3 for coated aluminum
cylinders with variation of rubber shear modulus.
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Figure 43: Axi@l strain at position Bl for coated aluminum
cylinders with variation of rubber shear modulus.
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Figure 44: Hoop strain at position Bl for coated aluminum
cylinders with variation of rubber shear modulus.




AXIAL STRAIN FOR ELEMENT B2

......
......

......

2500

MICROSTRAIN
o

RS- PO A e g - L Y S T P

| =-— SHEARMODULUS = 72.2 PSI
|1 —— SHEAR MODULUS = 95.8 PSI

-2500

-5000

“TIME(sec)

- FPigure 45: Axial strain at position B2 for coated aluminum

cylinders with variation of rubber shear modulus.
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Pigure 46: Hoop strain at position B2 for coated aluminum

cylinders with variation of rubber shear modulus.
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Figure 47: Axial strain at position B3 for coated aluminum
cylinders with variation of rubber shear modulus.
HOOQOP STRAIN FOR ELEMENT B3
E ..... . ‘/ | - - P
—-— SHEARMODULUS =722P31 | 7 7 1 "7 B , 1
3 TSNS SUPRROTURURIOROR S0 UL & VRO
S -
8 o
5 a
z ,,,,, : . ‘ .
g;‘ ]
{ .oN ; |
9 001 002 003
TIME(sec}

Figure 48: Hoop strain at position B3 for coated aluminum
cylinders with variation of rubber shear modulus.




MICROSTRAIN

AXIAL STRAIN FOR ELEMENT C1

=-~— SHEARMODULUS = 72.2 PSI
—— SHEARMODULUS = 95.8 PSI

MICROSTRAIN

-1x10°
0

TIME(sec)

Figure 49: Axial strain at position Cl for cocated aluminum
cylinders with variation of rubber shear modulus.
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Figure 50: Hoop strain at position Cl for coated aluminum
cylinders with variation of rubber shear modulus.
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Figure 51: Axial strain at position C2 for coated aluminum
cyiinders with variation of rubber shear modulus.
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* Figure 52: Hoop strain at position C2 for coated aluminum

cylinders with variation of rubber shear modulus.
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Pigure 53: Axial strain at position C3 for coated aluminum

cylinders with variation of rubber shear modulus.
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Pigure 54: Hoop strain at position C3 for coated aluminum
cylinders with variation of rubber shear modulus.
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INTERNAL ENERGY OF ALUMINUM SHELL MATERIAL

2.5x10°

2.0x10°

——v——+— SHEAR MODULUS =72.2 PSI
1.5x10% o SHEAR MODULUS =958 PSI

INTERNAL ENERGY/(in-Ib,)

0.5x10°

TIME(sec)

Pigure 55: Internal energy of aluminum shell material of
coated aluminum cylinders with variation of rubber
shear modulus.
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Figure 56: Effective plastic strain at position A3 for
uncoated and coated aluminum cylinders with large
variation of rubber shear modulus.
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Pigure 57: Radial velocity at node 49 for uncoated and coated
aluminum cylinders with large variation of rubber
shear modulus.
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shows a gradual and smooth return to the steady state. The
deformation of Composite Model 1 for different values of
rubber shear modulus 1is shown in Figure 58. Larger
deformation was visible in the cylinder that had a shear
modulus of 95.8 psi.. However, for larger values of shear
modulus, the amount of deformation 1is small and is
commensurate with deformation observed 1in the uncoated
aluminum cylinder model. The internal energy of the aluminum
shell material is plotted for different values of rubber shear
modulus and is shown in Figures 59 and 60. These plots clearly
show that when the shear modulus is high, the response of the
coated cylinder is almost identical tc the uncoated cyliinder.
The results cf this study seem to indicate that the dynamic
response of the cylinder is related to the stiffness of th

coating and is tharefore affected by the value of the shear
modulus. Furthermore, the dramatic change in the response of
the cylinder due to a change in the shear medulus of the
coating suggests the existence of a shear modulus “threshold*
value, i.e. a value below which causes the ccated cy.inder
adversely respond to an underwater shock wave.

In the third case, the objective was to examine the
sensitivity of the response to a change in the coefficient of
asymmetry while holding the shear modulus of the rubber
constant. Again, Composite Model 1 was utilized and ~he
coefficient of asymmetry was varied from 0.223 to 0.750. At

nearly all locations, axial and hocp strain values exhibited
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59: Internal energy of aluminum material for uncoated
and coated cylinders with large variation of
rubber shear modulus (10 msec. rarnge).
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INTERNAL ENERGY(in-1b)

relatively small deviations until late time (later than 2
msec.). The internal energy level of the aluminum, shown in
Figure 61, was virtually identical for both cylinders up
through 2.2 msec. and then showed a small deviation
thereafter. Strain results are shown in Figures 62-79, and
indicate that the dynamic response of the coated cylinder was
weakly influenced by changes in the coefficient of asymmetry

and were not evident until late time.

INTERNAL ENERGY OF ALUMINUM SHELL MATERIAL

20X105 g T T v B —— M v Y ~Y A A T =y

................................................................................................................................................

1.5x10% b
+—-— COEF OF ASYMMETRY = 0 750
COEF OF ASYMMETRY = 0 223
I
10x10* ¢
S
T

0 5x1Q* b+

TIME({sec)

Pigure 61: Compariscn of internal energy of aluminum shell
mater:ial of coated cylinder with variation in
ceefficient of asymmetry.
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Figure 62: Axial strain at position Al for coated aluminum

cy.inders with variation of coefficient of
aSYymmatry.
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Pigure 63: Hoop strain at position Al for coated aluminum

cylinders with variation of coefficient of
asymmetry.
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Pigure 64: Axial strain at position A2 for coated aluminum
cylinders with variation of coefficient of

asymmetry.
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Pigure 65: Hoop strain at position A2 for coated aluminum
cylinders with variation of coefficient of
asymmetry.
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FPigure 66: Axial strain at position A2 for coated aluminum
cylinders with variation of coefficieat of
asymmetry.
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Pigure 67: Hoop strain at position A3 for cz¢'=2d ciuminum
cylinde:s with variation of cosfiicient of
asymmetry.
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Figure 68: Axial strain at position Bl
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rigure 69: Hoop strain at position Bl for coated aluminum
cylinders with variation of coefficient of

asymnetry.
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Figure 70: Axial strain at position B2 for coated aluminum
cylinders with variation of coefficient of
asymmetry.
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Pigure 71: Hoop strain at position B2 for coated aluminum
cylinders with variation of coefficient of
asymmetry.
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Pigure 72: Axial strain at position B3 for coated aluminum
cylinders with variacion of coefficient cf
asymmetry .
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Pigurs 73: Hoop strain at position B3 for coated aluminum
cylinders with variation of coefficient of
asymmeiry.
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Figure 74: Axial strain at position Cl for coated aluminum

cylinders with variation of coefficient of
asymmetry.
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Figure 75: Hoop strain at position Cl for coated aluminum

cylinders with variation of coefficient of
asymmetry.
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Pigure 76: Axial strain at position C2 for coated aluminum
cylinders with variation cf coefficient of
asymmetry .
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Pigure 77: Hoop strain at position C2 for coated aluminum
cylinders with variation of cocefficient of
asymretry.
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Figure 78: Axial strain at position C3 for coated aluminum
cylinders with variation of coefficient of

asymmetry.
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Pigure 79: Hoop strain at position C3 for coated aluminum
cylinders with variation of coefficient of
asymmetry.




In the fourth case, the objective waz to determine how a
variation in the thickness of the aluminum would affect the
dynamic response of the coated cylinder. The thickness of the
aluminum shell material in Composite Model 1 was changed from
0.250 in. to 0.125 in. and 0.375 in.. The thickness of the
aluminum endplate remained constant (1 in. thick). Plots of
axial and hoop strain are shown in Figures 80-%7. The results
show that the thickness variation affected the cylinder
differently depending on the location where an element was
analyzed. For example, away from the endplate (*A" and "B*"
elements), hoop strain values were generally higher when the
aluminum thickness was reduced, however the thinner aluminum
resulted in lower axial strain values near the endlate. To
gain a better perspective on what the overall effect was,
effective plastic strain was rlotted for all elements cf

A

t and is shown 1n Figures 98-15¢. These pilots showed

s

ntere

m

hat

ct
(&4

@ thicker aluminum generally resulted In lower plastic
strain at locations away from the endplate but higher plastic
strain rnear the endpiate. Aluminum deformation is shown in
Figure 107 for the three dJdifferent thickness cases.
Deformations were scaled by a factor of five. It can not bhe
deduced which pattern of deformation represents the most
severe affect. The internal energy of the aluminum shell
material was also plotted and is shown wn Fiyure 108. The
results indicate that as the metal thicknsss was reduced, the

internal ener was also reduced. Results cf this study seem

24}
&
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Figure 80: A:gial sc;ain at position Al for coated cylinders
with variation of aluminum shell thickness.
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Pigure 81: Hoop strain at position Al for coated cylinders
with var:ation of aluminum shell thickness.

65




AXIAL STRAIN FOR ELEMENT A2
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Figure 82: Axial strain at position A2 for coated cylinders
with variacion of aluminum shell thickness.
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Figure 83: Hoop strain at position A2 for coated cylinders
with variation of aluminum shell thickness.
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AXIAL STRAIN FOR ELEMENT A3
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Figure 84: Axial strain at position A3 for coated cylinders
with variation of aluminum shell thickness.
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Figure 85: ZI@op strain at position A3 for coated cylinders
with variation of aluminum shell thickness.
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Figure 86: Axia. strain at position Bl for coated cylinders
with variation of aluminum shell thickness.
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Figure 87: Hoop strain at position Bl for coated cylinders
with variation of aluminum shell thickness.
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Figure 88: Axial strain at position B2 for coated cylinders
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with variation of aluminum shell thickness.
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Pigure 89: Hoop strain at position B2 for coated cylinders

with variation of aluminum shell thickness.
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AXIAL STRAIN FOR ELEMENT B3
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Figure 90: Axial strain at position B3 for coated cylinders
with variation of aluminum shell thickness.
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Figure

91: Hoop strain at position B3 for coated cylinders
with variation of aluminum shell thickness.

70




MICROSTRAIN

MICROSTRAIN

2.5x10°

AXIAL STRAIN FOR ELEMENT C1

0
"""""""" —— 0375 THICKALUMINUM |
.Z-SX105 .............. - 0.250. THICK ALUMINUM .............................................................................
------ 0125 THOK ALUMNUM | %7 o 1
................... N P
0 001 002 003
TIME(sec¢)
Figure 92: Axial strain at position Cl for coated cylinders
with variazion of a‘uminum shell thickness.
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rigure 93: Hoop ztrain at position Cl for coated cylinders

with variation of aluminum shell thickness.
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94: Axial strain at position C2 for ccated cylinders
with variation of aluminum shell thickness.
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Figure 95: Hoop strain at position C2 for coated cylinders

with variation of aluminum shell thickness.
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Figure 96: Axial strain at position C3 for coated cylinders
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with variation of aluminum shell thickness.
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?iquro 97: Hoop strain at position C3 for ccated cylinders

with variation of aluminum shell thickness.
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FPigure 98: Effective plastic strain at position Al for coated

cylinders with variation of aluminum shell
thickness.
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Pigure 99: Effective plastic strain at position A2 for coated
cylinders with variation of aluminum shell
thickness.
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EFFECTIVE PLASTIC STRAIN FOR ELEMENT A3
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Figure 100: Effective plastic strain at position A3 for coated
cylinders with variation of aluminum shell
thickness.
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Pigure 101: Effective plastic strain at position Bl for coated
cylinders with variation of aluminum shell

thickness.

75




EFFECTIVE PLASTIC STRAIN FOR ELEMENT B2
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Figure 102: Effective plastic strain at position B2 for coated
cylinders with variation of aluminum shell

thickness.,
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Figure 103: Effective plastic strain at position B3 for coated
cylinders with variation of aluminum sheil

thickness.
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EFFECTIVE PLASTIC STRAIN FOR ELEMENT C1
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Figure 104: Effective plastic strain at position Cl for coated
cylinders with var:ation of aluminum shell
thickness.
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Pigure 10S: Effective piastic strain at position C2 for coated
cy;;nders with variation of aluminum shell
thickness.
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Pigure 107: Deformatiocn of coated cylinders with variation of
aluminum shell thickness at 2.34 msec..
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Figure 108: Inrernal energy of aluminum shell material of

coated cylinders with variation of aluminum shell
thickness.
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to indicate that variations of metal thickness have a local
effect on response and are greatly influenced by inertia
effects.

In the fifth case, the objective was to determine how a
variation in the coating thickness would affect the dynamic
response of the cviinder. The thickness of the tread stock
rubber in Composite Model 1 was changed from 0.250 in. to
0.125 in. and to 0.375 in.. Axial and hoop strain values are
plotted and are shown in Figures 109-126. At nrearly all
locations, the response of the cylinder significantly improved
when the rubber thickness was increased but was adversely
affected when the rubber thickness was decreased. Early
termination of the proklem in the thin rubber cas: was due to
a severe diztortion of the model mesh. The effects of rubbecr
thickness are also evident in the values of effertive plastic
strain that were achieved and are shown in Figures 127-135.
Differences ia response can be seen in the deformation of the
cyliader for each case and are shcwn in Figuves 136 and i37.
The eff{ect is more dramatiz a% late time and can be seen more
clearly in the response at 2 86 nsec. (Fugure 137). Cylinder
response was also examined for a rubber thickness of 0.500 in.
and it was found that the response of the cylinder improved.
Internal energy of the aluminum shell material is plotted for
the various rubber thicknesses and is shown in Figure 138. As
observed in case 2 (shear modulus variation), the results of

this study also suppor: the hypothesis that the dynamic
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Axial strain at position Al for coated aluminum
cylinders with variation of rubber thickness.
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FPigure 110: Hoop strain at position Al for coated aluminum

cylinders with variation of rubber thickness.
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Figure 111: Axial strain at position A2 for coated aluminum
cylinders with variaticn of rubber thickness.
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FPigure 113: Axial strain at position A3 for coated aluminum
cylinders with variation of rubber thickness.

HOOP STRAIN FOR ELEMENT A3

O -+~ 0376" THICK RUBBER
0 ' : —— 0250" THICK RUBBER
[ 0 125° THICK RUBBER
E .0‘25“00 RIS "IN Z
é [ -
(]
g 0.50x10 t ‘
LN
}
0.75x10* |
[ »
g : -4
3 \ N . . 5 . . . -«
+1 00x10* A A
0 001 002 003

TIME(sac)

Pigure 114: Hoop strain at position A3 for coated aluminum
cylinders with variation of rubber thickness.
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Figure 115: Axial strain at position Bl for coated aluminum
cylinders with variation of rubber thickness.
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rigure 116: Hoop strain at position Bl for coated aluminum
cylinders with variation > vubber thickness.
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Figure 117: Axial strain at position B2 for coated aluminum
cylinders with variaticn of rubber thickness.
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Figure llezvﬂoop strain at position B2 for coated aluminum
cylinders with variation of rubber thickness.
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AXIAL STRAIN FOR ELEMENT B3
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Figure 119: Axial strain at position B3 for coated aluminum
cy.inders with variation of rubber thickness.
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Pigure 120: Hoop strain at position B3 for coated aluminum
cylinders with variation of rubber thickness.
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Pigure 122: Hoop strain at position Cl for coated aluminum

cylinder; with variation of rubber thickness.
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FPigure 123: Axial strain at position C2 for coatad aluminum

cylinders wizh variation of rubber thickness.
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124: Hoop strain at position C2 for coated aluminum
cylinders with variation of rubber thickness.
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Pigure 125: Axial strain at position C3 for coated aluminum
cylinders with variation of rubber thickness.
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Pigure 126: Hoop st:iain at osition C3 for coated aluminum
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cyiincers with variation of rubber thickness.
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Pigure 127: =ffective plastic strain at position Al for coated
aluminum cylinders with variation of gubber
thickness. .
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Pigure 128: Effective plastic strain at pesition A2 for coated

aluminum cylinders with variation of rubber
thickness.
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EFFECTIVE PLASTIC STRAIN FOR ELEMENT A3
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Figure 129: Effective plastic strain at position A3 for coated
aluminum cylinders with variation of rubber
thickness.
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Figure 130: Effective plastic strain at position Bl for coated
aluminum cylinders with variation of rubber
thickness,
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EFFECTIVE PLASTIC STRAIN FOR ELEMENT B2
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Pigure 131: Effective plastic strain at position B2 for cecated
aluminum cylinders with variation of rubber
thickaess.

EFFECTIVE PLASTIC STRAIN FOR ELEMENT B3
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rigure 133: Effective plastic strain at position B3 for coated
aluminum cylinders with variation of rubber
thickness.
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Figure 133: Effective plastic strain at position Cl for coated
aluminum cylinders with variation cf rubber
thickness.
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EFFECTIVE PLASTIC STRAIN FOR ELEMENT C1

Pigure 134: Effective plastic strain at position C2 for coated

aluminum cylinders with variation cf rubber
thickness.
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Figure 135: Effective plastic strain at position C3 for coated
aluminum cylinders with variation of rubber
thickness.
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Pigure 136: Deformation of coated aluminum cylinders with
variation of rubber thickness at 0.76 msec.
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Figure 137: Deformation of coated aluminum cylinders with

variation of rubber thickness at 2.86 msec.
(Displacement scale factor of 5).
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Figure 138: Internal energy of aluminum shell material
coated cylinders with variation of rubber

thickness.
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response of the cylinder is related to the stiffness of the
coating and is therefore affected by the thickness of the
coating. The significant difference in response due to changes
in coating thickness again suggest the existence of a
thickness "threshold" value, i.e. a value below which causes
the coated cylinder to respond adversely to an underwater
shock wave.

In the sixth case, the objective was to determine how a
change in the metal material would affect the dynamic response
of the cylinder. For this study, an uncoated steel cylinder
was compared to a steel cylinder coated with tread stock
~rubber. The steel shell thickness and coating thickness were
both 0.250 in.. The endplate thickness was 1 in. as in the
aluminum cylinder cases. Axial and hoop strain values are
plotted for all element locations and are shown in Figures
139-156. Results appeared analagous to those obtained in case
1. Again, axial and hoop strain values were larger in the
coated cylinder than in the uncoated cylinder. It was noted
that the ratio of the maximum response of the coated and
uncoated cylinders was generally higher in the case of steel
than in the case of aluminum. For example at location B3, for
response up through 1.3 msec., the ratio of coated to uncoated
maximum axial strain was 4.3 for steel and 1.£ for aluminum,
This is likely attributable to the strain-rate sensitivity of
steel. Kesults of this study indicate that effects of surface

coatings on the response of cylinders subjected to underwater
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AXIAL STRAIN FOR ELEMENT A1
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Pigure 139: Axial strain at position Al for uncoated and
coated steel cylinders.
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Figure 140: Hoop strain at position Al for uncoated and coated
steel cylinders.
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AXIAL STRAIN FOR ELEMENT A2
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Figure 141: Axial strain at position A2 for uncoated and
coated steel cylinders.
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Figure 142: Hoop strain at position A2 for uncoated and coated
steel cylinders.
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Axial strain at pesition A3 for uncoated and
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144: Hoop strain at position A3 for uncoated and coated
steel cylinders.
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AXIAL STRAIN FOR ELEMENT B1
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Figure 145: Axial strain at position Bl for uncoated and

coated steel cylinders.
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Figure 146: Hoop strain at position Bl for uncoated and coated

steel cylinders.
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AXIAL STRAIN FOR ELEMENT B2
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Pigure 147: Axial strain at position B2 for uncoated and
coated steel cylinders.
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Pigure 148: Hoop strain at position B2 for uncoated and coated
steel cylinders.
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AXIAL STRAIN FOR ELEMENT B3
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Pigure 149: Axial strain at position B3 for uncoated and
coated steel cylinders.
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Pigure 150: Hoop strain at position B3 for uncoated and coated
steel cyiinders.
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AXIAL STRAIN FOR ELEMENT C1
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151: Axial strain at position Cl for uncoated and
coated steel cylinders.
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Figure 152: Hoop strain at position Cl for uncoated and coated
steel cylinders.
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AXIAL STRAIN FOR ELEMENT C2
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Figure 153: Axial strain at position C2 for uncoated and
ccated steel cylinders.
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Pigure 154: Hoop strain at position C2 for uncoated and coated
steel cylinders.
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AXIAL STRAIN FOR ELEMENT C3
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FPigure 155: Axial strain at position C3 for uncoated and
coated steel cylinders.
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FPigure 156: Hoop strain at position C3 for uncoated and coated
steel cylinders.
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shock are similar, and while the magnitudes of the response

vary, the trends are the same.
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IV. CONCLUSIONS AND RECOMMENDATIONS

Under certain conditions, when subjected to underwater
shock, compliant coatings appeared to concentrate wave energy
within the structure for longer duration, resulting in
significantly higher magnitudes of stress and strain. Instead
of a gradual release of energy into the surrounding water
medium, most of the energy was retained in the metal material.
Cylinder response was most influenced by changes in rubber
shear modulus and rubber thickness. Increasing these values
resulted in improved cylinder response. Both parameters are
related to the coating stiffness and it is this property that
most likely governs the extent of the energy transfer in the
compliant coating and consequently the dynamic response of the
cylinder. Results point to the existence of threshold values
for both coating shear modulus and coating thickness, values
below which lead to adverse and erratic cylinder response.

A more detailed analysis of wave transmission and
reflection at the rubber-metal and rubber-water interfaces
would be beneficial. An examination of the effects of
stiffness changes at the microscopic level would improve our
understanding of the energy transfer mechanism in the coating.
A sensitivity analysis should also be conducted to investigate
cylinder response for changes in endplate thickness and

loading (asymmetrical vice symmetrical).
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Follow on physical tests should be conducted to validate
v the numerical models and tc¢ enhance our understanding of the

effects of compliant coatings on shock hardening.
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APPENDIX - COMPOSITE CYLINDER MODEL INGRID INPUT FILE

MODEL .MOONRIV.1.ING //THICKSHELL AND BRICK, ALUMINUM AND RUBBER(TREAD STOCK)//

dn3d vec term 0.010 plti

mat 1 type 3 e 1.08e+7 pr
tshell quad 3 thick

mat 2 type 3 e 1.08e+7 pr
tshell quad 3 thick

mat 3 type 3 e 1.08e+7 pr
endmat

mat 4 type 3 e 1.08e+7 pr
endmat

mat 5 type 3 e 1.08e+7 pr
endmat

aocaa

follows:

aagaoon

aaoa

0.
2

10 0.001 symm
00 0.001 symm

c name type point
sd 1 cyli 000

sd 2 cyld 000
sd 3 cyli 000
sd 4 cyli 000

20.0e-6 prti 1000.0

0.33 ro 2.610e-4 etan 0.0 sigy 4.0e+d
0.250 endmat

0.33 ro 2.160e-4 etan 0.0 sigy 4.0e+4
1.000 endmat

0.33 ro 2.160e-4 etan 0.0 sigy 4.0e+4
0.33 ro 2.160e-5 etan 0.0 sigy 4.0e+d

0.33 ro 2.160e-5 etan 0.0 sigy 4.0e+4

Materials 3-5 are modeled as the rubber material, however the ingrid program
will not accept this material specification. Therefore, these materials will
be entered as if aluminum brick elements and the correct properties for the
rubber will be edited in the ingride file.

The material input line for the rubber material parts should appear as

mat 3 type 27 a 25.291 b 18.609 pr 0.4991 ro 9.20e-05 endmat
mat 4 type 27 a 29.291 b 18.609 pr 0.4991 ro 9.20e-05 endmat
mat 5 type 27 a 29.291 b 18.609 pr 0.4991 ro 9.20e-05 endmat

Materials 1 and 2 are Aluminum and are used for the inner cylindrical shell
and inner end plate. Materials 3,4 and 5 are Tread Stock (Type of rubber)
and are used for the outer cylindrical shell and ocuter end plate.

0 S.0e-2 0.0
.0e-7 5.0e-2 2.0e-7

dir vector size

010 6.250
010 6.000
010 $.750

010 {5.750%2./3.)

C wewdrweves Gonerate Inner Cylindrical Shell eeeidtstiewe

start
1 2 3 6
1 2 4 6
1 2 3 6

-10 '10 '10 °Q

9 10 11

8 13 18 20 22 24 3%
9 10 11 ;

1. 1. 1.

-21.0 -20.0 ~17.8% -14.% -11.0 0.0 11.0 14.5 17.8 200.0 21.0

1. 1. 1. .

or 6§ 00700 k3
or 10020013k
er 00100214
or 00600731

o -1 -1,

112




di 13057 ; ;13057 ;
d202606

sfi{ -1 -7 ; ; -1 -7 ; sd 2
8fi -2 -6 ; ; -2 -6 ; sd 3
v d010060
d100400O0
mate 1
<
end

C  r##*wwwvas+r Generate Inner End Plate +*wsedssss

start
1 3 6 9 11 ;
1 2
1 3 6 9 11 ;
-1. -1 0. 1, 1
20.0 21.0
-1. -1 0. 1. 1

or 0 00000O0KkI
di 12045; ;12045 ;

sfi -1 -5; ; -1 -5; sd3
sfvi -2 -4 ; ; -2 -4 ; &d 4
d100300

mate 2

end

C  rkwkwwrwwk Generate Outer Cylindrical Shell Coating  wwwwkwwwes

start
1 2 3 6 9 10 11,
1 2 3 5 7 9 14 19 2l 23 25 26 27 ;
1 2 3 6 S 10 11 ;
'1. "'lo "10 00 10 10 10
‘21025 ‘21.0 ‘2000 '1705 '1405 '1100 0-0 11-0 1‘05 1705 2000 2100 21025
10 ’.o 1. 00 "'10 "lo -10
or 600700k}
or 1002003k
or 6001002413
or 0060073 1{

pri -1 -7 ; ;-1 -7 ; 1 -1.0 0.0 0.0 0.0

! di 13057 ; ;13057 ;
d202606

. sfi -1 -7 ; ; ~1<7; 8dl
8fi -2 -6 ; 3 ~2 -6 ; sd 2

do 1 0 0 7 0
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dl1 0 0 4 0 0
mate 3
end

C **¥kxkikxr Generate Quter End

start
1 2 3 6
1 2 ;
1 2 3 6
-10 -lo -1 0.
21.0 21,250
-1, -1, -1 0
or 6 007 00Kk 3
or 1002003k
or 001002141
or 00600731

di 13057 ;;13057;
d202606

sd 2
sd 3

sfi -1 -7 ; ; -1 -7 ;
sfi -2 -6 ; ; -2 -6 ;

dl 0 0 4 0 O
mate 4

end

Plate Coating (Small

11
11

Ring Area) wwesswdtdw

~e

C kesdkwkwwr  Generate Quter End Plate Coating (Large Plate Area) LR AR

start
13 6 9 11 ;
1 2
1 k| 6 9 11 ;
-10 -10 05 10 10
21.0 21.250
—10 -10 0- 10 1-

or 000C0O0O0KkI{

pr 121525 1 -1.0 0.00.00.0
di 12045; ;12045
sfi -1-5; ; -1-5; s8d3
sfvi -2 -4 ; ; -2 -4 ; s8d 4
dl100300O0
mate $

end

end
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